Исбот кунед, ки \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}>\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\),
агар \(0\lt x\lt y\lt z\) бошад.
Азбаски \(0\lt x\lt y\lt z\), мешавад ки
\(\frac{x}{y}\lt1,\)
\(\frac{y}{z}\lt1,\)
\(\frac{z}{x}>1.\)
Бинобар ҳамин:
\(\frac{x}{y}-1\lt0,\)
\(\frac{y}{z}-1\lt0,\)
\(\frac{z}{x}-1>0\) ва
\((\frac{x}{y}-1)\cdot(\frac{y}{z}-1)\cdot(\frac{z}{x}-1)>0.\)
\((\frac{x}{y}-1)\cdot(\frac{y}{z}-1)\cdot(\frac{z}{x}-1)=(\frac{x}{y}-1)\cdot(\frac{y}{x}-\frac{y}{z}-\frac{z}{x}+1)=\)
\(=\frac{x}{y}\cdot\frac{y}{x}-\frac{x}{y}\cdot\frac{y}{z}-\frac{x}{y}\cdot\frac{z}{x}+\frac{x}{y}-\)
\(-\frac{y}{x}+\frac{y}{z}+\frac{z}{x}-1=\)
\(=1-\frac{x}{z}-\frac{z}{y}+\frac{x}{y}-\frac{y}{x}+\frac{y}{z}+\frac{z}{x}-1=\)
\(=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}-(\frac{y}{x}+\frac{z}{y}+\frac{x}{z})\)
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}-(\frac{y}{x}+\frac{z}{y}+\frac{x}{z})>0\)
Яъне
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}>\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\)
Исбот шуд.